Back

Who we are

With research staff from more than 60 countries, and offices across the globe, IFPRI provides research-based policy solutions to sustainably reduce poverty and end hunger and malnutrition in developing countries.

Liangzhi You

Liangzhi You is a Senior Research Fellow and theme leader in the Foresight and Policy Modeling Unit, based in Washington, DC. His research focuses on climate resilience, spatial data and analytics, agroecosystems, and agricultural science policy. Gridded crop production data of the world (SPAM) and the agricultural technology evaluation model (DREAM) are among his research contributions. 

Where we work

Back

Where we work

IFPRI currently has more than 600 employees working in over 80 countries with a wide range of local, national, and international partners.

Overview

The Rural Investment and Policy Analysis (RIAPA) data and modeling system is IFPRI’s primary tool for forward-looking, economywide country-level analysis, serving as a simulation laboratory for experimenting with policies, investments, or economic shocks. Figure 1 is a representation of the structure of the RIAPA system. At its core is IFPRI’s standard recursive-dynamic Computable General Equilibrium (CGE) model, an economywide simulation tool. IFPRI’s static and dynamic economywide models incorporate flexible behavioral features, such as nested production functions, imperfect substitution of imported commodities, and linear expenditure systems of consumer demand. Consumers and producers maximize utility and profits based on factor and product prices, which adjust endogenously to establish market equilibrium. In the dynamic version, population growth and urbanization are set exogenously, affecting labor supplies, while sectoral capital accumulation is endogenously determined based on past investments.

Figure 1. The RIAPA model and data systems

RIAPA Model

The CGE model is calibrated using a Social Accounting Matrix (SAM), which is an economywide database. IFPRI’s Nexus SAMs adopt common data standards and classification systems, ensuring greater data transparency and consistency across countries. A typical Nexus SAM includes 90 economic sectors, and about than half of these are in primary agriculture, agri-food processing, and food services. This detail makes RIAPA unique in its representation of national agri-food systems. IFPRI maintains publicly accessible SAMs for around 30 countries throughout Africa, Asia, and Latin America.

Beyond the core SAM data, the RIAPA data and modeling system incorporates several add-on modules that help specify simulation parameters and add depth to standard CGE model results:

  • The AIDA module translates public agricultural investment spending into changes in sectoral productivity, taking into account the cost of investment. A value chain focused investment tool (VCMA) tracks how the introduction of new products or the upgrading of existing product supply chains compete with existing ones and can contribute to agricultural transformation (see here for an application). RIAPA can also be linked to other standalone models to allow analysts to exploit strengths of different types of models. For example, RIAPA can link to upstream livestock models, such as the LEAS model; crop models such as DSSAT or SPAM; multi-market models such as the IMPACT; and global CGE models such as MIRAGRODEP.
  • Add-on modules also track specialized outcome indicators relevant to our understanding of inclusive agricultural transformation and economic development. These include several outcome indicators relevant to the agri-food system (AFS), including production and employment outcomes, natural resource use, and greenhouse gas emissions. RIAPA also includes various survey-based microsimulation modules that track welfare outcomes, including poverty and inequality, diet costs and the ReDD index, and the WIST indicator.

RIAPA’s features and capabilities

RIAPA includes useful distinguishing features that make it ideal for tracking the economywide impacts of policies, investments, or economic shocks.

  • First, the detailed representation of the agri-food system (AFS) in Nexus SAMs allows analysts to measure impacts throughout the AFS and between the AFS and the broader national economy and global markets. The interconnectedness of components within the AFS implies that policies that affect farmers can have spillover implications for actors in the input supply, trade, agroprocessing, or food service sectors. Likewise, off-farm policies or investments, whether in the AFS or non-AFS, can affect farmers indirectly. RIAPA allows analysts to anticipate these effects by modeling the complex linkages that exist between economic actors.
  • Second, RIAPA helps policymakers better understand the trade-offs associated with policy and investment choices. Not all policies or investments are equally effective at achieving all development outcomes and may simultaneously create winners and losers. Trade-offs may arise from competition over scarce resources, from structural differences between economic sectors (e.g., in terms of technologies, labor skill requirements, or downstream linkages to processing and services), and from differences in the way households interact with economic sectors (e.g., as workers or consumers). Ultimately, in a world of scarcity and trade-offs, policy choices must reflect society’s priorities, and the RIAPA model and data system can inform those prioritization decisions.
  • Third, by capturing macro-micro linkages RIAPA helps analysts interpret implications of economywide shocks for individual households and people. RIAPA’s social inclusion outcome indicators on poverty, diet quality, and women’s inclusion are generated using survey-based microsimulation models linked to the core CGE model.
  • Fourth, RIAPA’s country coverage has expanded rapidly in recent years to over 30 countries (Figure 2), mainly due to the new streamlined process for building Nexus SAMs. This wide coverage allows the modeling team to respond quickly to modeling and information needs in many countries and to undertake comparative analyses on emerging themes, for instance, on the economic costs of COVID-19.

Figure 2. Countries with RIAPA models

RIAPA Figure 2

Model applications

CGE models are versatile tools for conducting ex ante impact analysis. IFPRI researchers have used CGE models to examine impacts of on-farm investments in irrigation, input subsidies, climate smart technologies, off-farm investments in grain stocks, and new value chains such as biofuels. An important area of our analysis with RIAPA has been on implications of growth in specific agricultural sectors such as teff in Ethiopia, the identification of priority value agricultural value chains, for example in Senegal, or cross-country comparisons of agricultural growth-poverty linkages. The RIAPA framework is also ideally suited to prioritizing among agricultural policies and investments, with studies recently concluded in Rwanda, Mozambique, Ghana, and Uganda.

More generally, CGE models have been used to assess impacts of socioeconomic policies such as cash transfers, labor market policies such as wage subsidies, trade policies such as export bans or fixed exchange rate regimes, and tax policies such as carbon taxes. Recent work considers the implications of policies for dietary nutrient availability and diet quality. CGE models are also ideally suited to analyzing the impacts of external shocks, including for example food price shocks or droughts and floods. IFPRI has extensive experience using integrated climate, biophysical, and economic models to evaluate economic impacts under future climate change.

For further information, please email: IFPRI-RIAPA.


Donors

United States Agency for International Development (USAID)
Bill & Melinda Gates Foundation
CGIAR Research Program on Policies, Institutions, and Markets (PIM)

Team members

James Thurlow

Director, Foresight and Policy Modeling (FPM), Foresight
and Policy Modeling

Karl Pauw

Senior Research Fellow, Foresight
and Policy Modeling

Jenny Smart

Senior Program Manager, Poverty,
Gender, and Inclusion

Peixun Fang

Senior Research Analyst, Foresight
and Policy Modeling

Xinshen Diao

Senior Research Fellow, Foresight and Policy Modeling, Foresight
and Policy Modeling

Stephanie Levy

Guest Lecturer in the Department of International Development, London School of Economics (LSE), London

Link

External Resources

External blogs

Rising prices to push people into poverty

The International Food Policy Research Institute (Ifpri) says the rise in global commodity prices has raised Malawi’s national poverty headcount rate by 2.1 percentage points. In its report, Ifpri said the increase is equivalent to an additional 394 000 people falling below the international poverty line of $2.15 (about K2 216) per day.

External events

Impacts of the Ukraine and Global Crisis on Food Systems and Poverty in Kenya

Many countries including Kenya are affected by the impacts of the Ukraine and Global Crisis. Prices across a range of commodities including in fertilizers, edible oils, and maize, as well as oil, natural gas and other energy products have risen sharply (some predating the war). How are these sharp international price increases impacting Kenya and its people, and how can the Kenyan Government respond?

Impacts of the Ukraine and Global Crisis on Food Systems and Poverty in Kenya

Recurrent food crises and shocks in the world necessitate immediate national as well as global responses to provide short-term relief and longer-term policy change. As economies began recovering from the global COVID-19 pandemic during 2021, the Russian-Ukraine crisis emerged and has become a major setback to global recovering, sparking another global food security crisis. Some countries are particularly vulnerable, including those experiencing uneven economic recovery due to the COVID-19 pandemic, conflict-affected and fragile economies, and low-income countries with high levels of food import dependence.

IFPRI Analyses: Country-Level Impacts of High Food, Fuel and Fertilizer Prices

Global food, fuel, and fertilizer prices have risen rapidly in recent months. This has been driven in large part by the fallout from the ongoing war in Ukraine and the sanctions imposed on Russia, although other factors, such as export bans, have also contributed to rising prices.

The Importance of Timely Analyses for Decision-Making during a Period of Crisis

The USAID Bureau for Resilience and Food Security is excited to host a Webinar on the Importance of Timely Analyses for Decision-Making During a Period of Crisis within the framework of the Agrilinks Theme Month on the Impacts of High Food, Fuel & Fertilizer Cost. This webinar will provide a snapshot of a series of country analyses by the International Food Policy Research Institute (IFPRI) on the Impacts of the High Food, Fuel and Fertilizer Prices exacerbated by the Russian invasion of Ukraine.

The Devastating and Enormous Impact of the Food Security Crisis: Looking at an …

Registration will close at 6:00 PM on Tuesday, July 26, 2022. This event is open to SID-US Members only. Event details and Zoom link will only be sent to current members on Wednesday, July 27.

If you are not a SID-US member and you’d like to join, please see membership information here or email membership@sid-us.org.